
ACCOUNTING FOR UNCERTAINTY IN OBSERVATIONS:
A NEW PARADIGM FOR ROBUST AUTOMATIC SPEECH RECOGNITION

Trausti T. Kristjansson, Brendan J. Frey

Probabilistic and Statistical Inference Group
University of Toronto

ABSTRACT

We introduce a new paradigm for Robust Automatic Speech
Recognition that directly incorporates information aboutthe
uncertainty introduced by environmental noise. In contrast
to the feature cleaning and model adaptation paradigms,
where the noise compensation mechanism is separate from
the recognizer, the new paradigm unifies the noise com-
pensation mechanism and the recognizer. The Algonquin
framework serves to demonstrate the importance of retain-
ing soft information, i.e. information about the degree of
uncertainty in the observations. The Algonquin framework
employs Gaussian mixture models to model both noise and
speech. Uncertainty introduced by the noise process is cap-
tured by the variance of the noise model. The Algonquin
framework also allows us to isolate the effect of retaining
or discarding soft information. Our initial results indicate
that substantial improvements in recognition rates can be
achieved through the use of soft information.

1. INTRODUCTION

It is well known that recognition rates of speech recogni-
tion systems suffer considerably when there is a mismatch
between training and deployment conditions.

The two most common approaches to noise robust
speech recognition arefeature cleaning andmodel adapta-
tion. The goal of feature cleaning is to restore or clean the
noisy features such that they resemble those of the training
environment. Methods that fall into this category are Spec-
tral Subtraction (SS), Cepstral Mean Normalization (CMN)
and Algonquin[1], to name a few. The complexity of fea-
ture cleaning methods can be low. However, these methods
produce point estimates of the clean speech and information
about the uncertainty in the observations is thus lost.

A second method is to alter the acoustic models of the
recognizer. In this case, given a model of the noise and
channel environment, the goal is to update the acoustic
models of the recognizer, such that they approximate the
models that would have resulted from training directly on
the speech in the current noisy environment. Methods that

fall into this category are PMC[2] and VTS[3]. The advan-
tage of this approach is that the models reflect the inherent
uncertainty that is introduced by the noise process. A dis-
advantage is the relative computational complexity of this
approach.

In this paper we introduce a new approach that gives the
advantages of both above mentioned paradigms.

2. FUNDAMENTALS

For speech recognition systems based on Hidden Markov
Models, the most common decoding method is based on the
Viterbi algorithm. The Viterbi algorithm returns the most
likely state sequences, given a sequenceX of observation
vectorsx:

ŝ = argmax
s

p(s,X) = argmax
s

p(s|X) (1)

An HMM based speech recognizer is comprised of acoustic
modelsp(X|s) as well as language models and state transi-
tion matrices of the HMMs which combine to give the tran-
sition probabilities between statesp(si|si−1 . . . s0), wherei
indexes the time frame.

When there is noise and channel distortion in the en-
vironment, we observe corrupted featuresY instead of
X. The environmental noise process introduces both bias
and fundamental uncertainty. Bias shifts the classification
boundaries, but can be accounted for. However uncertainty
increases the overlap of class conditional likelihood distri-
butions, and thus the classification error increases. Despite
this, the optimal classification strategy is based on using the
posterior of the noisy speechp(s|Y). By the data process-
ing inequality[4] it is impossible to gain more information
abouts by manipulatingy e.g. by cleaningy to producêx.

Intuitively, the effect of noise is to reduce our certainty
that an observation belongs to one class rather than the
other. Figure 1 shows observation scores for a particu-
lar speech frame. At the top, the log observation likelihoods
log(p(x|s)) of the clean speech frame are shown. The bot-
tom two plots show observation scores for the same frame
with noise at 5dB SNR. The middle plot shows the log
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Fig. 1. The plots show the log observation likelihood for the
statess in the word models for ’two’,’three’ and ’four’ for
frame 30 of file MAH3A. This file contains the utterance
’three’. The plots show clean speechlog(p(x|s)), cleaned
speechlog(p(x̂|s)) and the soft information score which is
approximately equal tolog(p(y|s)) + const.

observation likelihoodlog(p(x̂|s)) of the cleaned speech
frame and the bottom plot shows the soft information score
which is approximately equivalent tolog(p(y|s))1. Notice
that p(x̂|s) looks more likep(x|s), and the range of soft
information scores is smaller. Since a cleaning method is
forced to choose a singlêx, it may amplify the error in the
case of a wrong choice, instead of remaining neutral as to
which class the observation belongs.

Speech recognition systems employ complex
speech models including language models and word
or phone HMMs that encode the transition probabilities
p(si|si−1 . . . s0) between states. Some cleaning methods
such as Algonquin also use speech models. In the case
of Algonquin, speech is modeled by a Gaussian Mixture
Model (GMM). By deferring the hard decision to the de-
coding step of the recognizer, we avoid making a decision
based on the much weaker state transition model of the
cleaning algorithm2. As we will see below, we remove the
effect of the “language model” of the cleaning algorithm by
dividing byp(s) in Eqn. (5).

Model adaptation replacesp(X|s) by an approximation
to p(Y|s). Thus model adaptation methods preserve infor-
mation about the uncertainty introduced by the environmen-
tal noise.

We propose two alternatives to the model adaptation
method, that also preserve the information about the un-

1The plot showslog(qy(s)/p(s)) which is approximately equal to
log(p(y|s)/p(y)) = log(p(y|s)) + const.

2The MMSE version of Algonquin uses a GMM to model speech and
therefore does not use state transition probabilities.

certainty of the observations. The first relies on estimating
p(si|yi)/p(si) and returning this value to the recognizer:

p(s|Y) = p(s0)
∏

i

p(yi|si)

p(yi)
· p(si|si−1)

= p(s0)
∏

i

p(si|yi)

p(si)
· p(si|si−1) (2)

Thus, if we can approximatep(si|yi)/p(si) we can preserve
soft information. The Algonquin framework allows us to do
this. We present results for this approach below.

Alternatively, we can estimatep(xi|yi)/p(xi), since:

p(s|Y) = p(s0)
∏

i

p(yi|si) · p(si|si−1)

p(yi)

= p(s0)
∏

i

∫

p(yi|xi)p(xi|si)dx

p(yi)
· p(si|si−1)

= p(s0)
∏

i

∫

p(xi|yi)

p(xi)
p(xi|si)dx · p(si|si−1) (3)

In this case, the goal is to estimatep(xi|yi)
p(xi)

in a form that
allows for the integral to be calculated easily, e.g. in a
Gaussian form. Some noise cleaning methods e.g. Algo-
nquin, employ speech priorsp(xi) and estimate the poste-
rior p(xi|yi), and can thus be used in this context.

3. VARIATIONAL ESTIMATE OF p(s|y)/p(s)

The Algonquin framework is ideally suited to demonstrate
the importance of retaining soft information in the decod-
ing of speech. While some noise robustness methodolo-
gies, such as spectral subtraction, use point estimates forthe
noise process, Algonquin used Gaussian mixture models to
model both speech and noise. The “uncertainty” introduced
by the noise process is captured in the variance parameters
of the noise model.

Algonquin uses a variational method to produce an ap-
proximationqy(x) to the posteriorp(x|y). The approxi-
mate posterior is used to calculate a point estimate of the
clean speech featuresx̂ through an MMSE estimate:

x̂ =

∫

xp(x|y)dx ≈

∫

x
∑

s

qy(s)qy(x|s)dx (4)

Using the cleaned featuresx̂, the observation likelihood cal-
culated by the recognizer is thusp(x̂|s). In order to use soft
information, we require the evaluation of

p(s|y)

p(s)
≈

qy(s)

p(s)
(5)

which is substituted forp(x̂|s) in the recognizer. As we will
see belowp(s|y) ≈ qy(s) so all the components required to



calculate the soft information score in Eqn. (5) are available
from the calculation of the point estimate in Eqn. (4).

We will now fill in some of the relevant details of the
Algonquin framework. See [1] for a more thorough intro-
duction, and [5, 6] for a description of noise and channel
adaptive extensions.

As noted before, the Algonquin framework employs
Gaussian mixture models to model the speech and noise in
the log-spectrum domain, thus, the joint distribution over
noisy speechy, speechx, speech classsx, noisen, noise
classsn is:

p(y,x,n, sx, sn) = p(y|x,n)p(sx)p(x|sx)p(sn)p(n|sn)

= N (y;g
([

xn
])

,Ψ)

· πx
sxN (x;µx

sx ,Σx
sx) · πn

snN (n;µn
sn ,Σn

sn). (6)

For the current frame of noisy speechy, Algonquin approx-
imates the posterior using a simpler, parameterized distribu-
tion, q:

p(x,n, sx, sn|y) ≈ qy(x,n, sx, sn). (7)

The “variational parameters” ofq are adjusted to make this
approximation accurate, and thenq is used as a surrogate
for the true posterior when computinĝx and calculating the
soft information scoreqy(s)/p(s). See [7] for a review of
variational inference techniques.

Theq function is a mixture of Gaussians:

qy(x,n) =
∑

{sx,sn}

qy(sx, sn)qy(x,n|sx, sn) (8)

where theqy(sx, sn)s serve as mixture weights. Note that

p(sx|y) ≈ qy(s) =
∑

sn

qy(sx, sn) (9)

which is used in the calculation of the soft information score
in Eqn. (5).

In order to find the approximate posteriorq, the Al-
gonquin framework uses variational inference. The goal
of variational inference is to minimize the relative entropy
(Kullback-Leibler divergence) betweenq andp:

K =
∑

{sx,sn}

∫

{x,n}

qy(x,n, sx, sn)

· ln
qy(x,n, sx, sn)

p(x,n, sx, sn|y)
. (10)

This is a particularly good choice for a cost function, be-
cause minimizingK is equivalent to maximizing

F = ln p(y) −K =
∑

{sx,sn}

∫

{x,n}

qy(x,n, sx, sn) · ln
p(x,n, sx, sn,y)

qy(x,n, sx, sn)
.

(11)

4. EXPERIMENTS AND RESULTS

Our tests were conducted on the Aurora 2 data set produced
by ETSI. The experiments were run on Set A of the dataset.
This set consists of 1001 files containing spoken digits, for
each of the 28 noise conditions. Each file contains from
1 to 5 digits. Four noise types (subway, car, babble and
exhibition) were artificially added to the clean speech files
at seven SNR levels (Clean, 20dB, 15dB, 10dB, 5dB, 0dB
and -5dB).

The Aurora data set is supplied with a standard Mel-
frequency Cepstrum Coefficient (MFCC) front end and the
CU-HTK speech recognizer. For the experiments reported
here, we used filter-bank parameters without delta or accel-
eration features. These features were produced by altering
the standard front end such that it writes out the log-Mel-
spectrum values just prior to taking the DCT. It is known
that MFCC parameters perform considerably better than
filter-bank parameters. Due to the larger complexity of ex-
periments when performed in the MFCC domain we only
report results on filter-bank parameters.

Clean 20dB 15dB 10dB 5dB 0dB −5dB
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
%

Noise condition

Soft information
Point estimate
No processing

Fig. 2. Average recognition accuracy as a function of signal
to noise ratio. The three conditions shown aresoft informa-
tion i.e. usingqyi

(si)/p(si) in the recognizer, using MMSE
Algonquin for feature cleaning and no processing of the cor-
rupted features.

The standard HTK recognizer accepts observation fea-
turesx and calculates acoustic scores internally based on
the acoustic modelsp(x|s). Experiments based on feature
cleaning and model adaptation can be performed without al-
tering the recognizer, i.e. by supplyinĝx or alteringp(x|s)
respectively. However, our algorithm relies on the fusion
of the noise adaptation stage and calculation of acoustic
scores. Thus, the HTK recognizer had to be altered to accept
the scoresqyi

(si)/p(si) calculated by our algorithm. These



scores were substituted forp(xi|si) in the recognizer.
Twelve speech models are used in the Aurora task,

’zero’ though ’nine’, ’oh’ and silence. Each model has 16
states and the silence model has 3 states, for a total of 179
states. Thus,qyi

(si)/p(si) had to be calculated for each
statesi for each framei, as described above.

The Algonquin algorithm requires a GMM speech
model p(x). p(x) was constructed from the HMM mod-
els trained by HTK. The mixture meansµx

sx and variance
Σx

sx (see Eqn. (6)) were copied directly from the acoustic
models of the recognizer. To find the mixture weightsπx

sx , a
179× 179 state transition matrix was first constructed from
the language model and the transition matrices of the HTK
HMM word models. Then the stationary distribution of the
transition matrix was found and multiplied by the mixture
weights of the Gaussian components of the acoustic mod-
els. This resulted in a 552 component Gaussian mixture
model.

The noise model consisted of a single component multi-
variate Gaussian. A different model was estimated for each
utterance, from the first 20 frames of that file.

The calculation of the soft information score in Eqn. (5)
and the point estimate Eqn. (4) share almost all of the same
steps. We can therefore provide a comparison that differs
only in this aspect (i.e. point estimate vs. soft information),
while holding all other aspects constant, such as methodol-
ogy, approximation errors, speech and noise models etc.

Figure 2 compares the techniques of passing a point es-
timate of the clean speech to that of taking uncertainty into
account by usingqyi

(si)/p(si). As can be seen recogni-
tion accuracy improves considerably for all SNRs except
for clean speech where it is slightly reduced. For example,
at 15dB, the average accuracy goes from 78.70% accuracy
to 88.29% which is an increase in accuracy of 9.59% and a
relative drop in Word Error Rate (WER) of 45.01%. As ex-
pected, the use of soft information is most effective at inter-
mediate SNRs. For clean speech, there is a drop in accuracy
of 0.49% or 10.62% relative WER. At “infinite” SNR, we
should ideally leave the parameters unchanged. Approxi-
mation error and error in estimation of the noise parameters
seems to have a greater adverse effect on the soft informa-
tion method.

The relative reduction in WER is shown in Table 1.
The average relative reduction in WER for noise conditions
20dB through 0dB is 28.31%.

5. CONCLUSION AND FUTURE WORK

In this paper we have clearly shown the importance of in-
corporating information about the uncertainty introducedby
the noise process into the speech decoder. We derived two
forms of thesoft information paradigm and showed how the
Algonquin method can be used within this paradigm.

Subway Car Babble Exhib. Ave.

clean -17.78 -8.52 -5.95 -11.26 -10.62
20dB 48.53 34.42 44.37 47.20 44.91
15dB 45.41 37.37 48.81 47.00 45.01
10dB 35.69 38.21 43.28 40.53 38.88
5dB 18.76 27.19 31.85 26.69 25.27
0dB 7.77 13.37 26.63 18.80 15.70
-5dB 3.10 2.40 15.92 11.41 7.84

Ave. 24.65 24.71 35.04 31.18 28.31

Table 1. Relative reduction in word error rate in percent for
soft information method compared to using a point estimate
of clean speech.

The results given here are based on log-Mel-spectrum
features. The recognition rates for these features are lower
than when using Algonquin with MFCC features[1, 5]. We
are confident that the gains in recognition accuracy due to
the use of soft information will carry over to other methods
that are compatible with this new paradigm, in particular,
we expect similar gains in accuracy for Algonquin when
used in the MFCC domain.
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